Exercise 3

In Exercises 3 and 4, find the domains of $f, g, f / g$, and g / f.

$$
f(x)=2, \quad g(x)=x^{2}+1
$$

Solution

Any number can be plugged in for x to the formulas for f and g, as they're polynomial functions. This means the domain of f and the domain of g are $(-\infty, \infty)$. The ratio f / g is

$$
\frac{f(x)}{g(x)}=\frac{2}{x^{2}+1}
$$

This is a rational function, and the denominator cannot be zero.

$$
\begin{gathered}
x^{2}+1 \neq 0 \\
x^{2} \neq-1
\end{gathered}
$$

No value of x satisfies this inequality, so any value of x can be plugged into f / g. Its domain is $(-\infty, \infty)$. The ratio g / f is

$$
\frac{g(x)}{f(x)}=\frac{x^{2}+1}{2}=\frac{1}{2}\left(x^{2}+1\right)=\frac{1}{2} x^{2}+\frac{1}{2}
$$

which is another polynomial function. Its domain is $(-\infty, \infty)$ because any number can be plugged in for x.

